The glutamate receptor subunit delta1 is highly expressed in hair cells of the auditory and vestibular systems.

نویسندگان

  • S Safieddine
  • R J Wenthold
چکیده

In the inner ear, fast excitatory synaptic transmission is mediated by ionotropic glutamate receptors, including AMPA, kainate, and NMDA receptors. The recently identified delta1 and delta2 glutamate receptors share low homology with the other three types, and no clear response or ligand binding has been obtained from cells transfected with delta alone or in combination with other ionotropic receptors. Studies of mice lacking expression of delta2 show that this subunit plays a crucial role in plasticity of cerebellar glutamatergic synapses. In addition, these mice show a deficit in vestibular compensation. These findings and the nature of glutamatergic synapses between vestibulocochlear hair cells and primary afferent dendrites suggest that delta receptors may be functionally important in the inner ear and prompted us to investigate the expression of delta receptors in the cochlea and peripheral vestibular system. Reverse transcription and DNA amplification by PCR combined with immunocytochemistry and in situ hybridization were used. Our results show that the expression of delta1 in the organ of Corti is intense and restricted to the inner hair cells, whereas delta1 is expressed in all spiral ganglion neurons as well as in their satellite glial cells. In the vestibular end organ, delta1 was highly expressed in both hair cell types and also was expressed in the vestibular ganglion neurons. The prominent expression of delta1 in inner hair cells and in type I and type II vestibular hair cells suggests a functional role in hair cell neurotransmission.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Postnatal expression of EAAC1 and glutamate receptor subunits in vestibular nuclear neurons responsive to vertical linear acceleration

Both glutamate receptors and transporters are known to be important in the postsynaptic regulation of glutamate neurotransmission. However, the maturation profile of glutamate transporter EAAC1 and glutamate receptor subunits (NR1, NR2A and NR2B; and GluR 1-4) in functionally activated saccule-related vestibular nuclear neurons of postnatal rats remains unclear. In the present study, conscious ...

متن کامل

Postnatal expression of EAAC1 and glutamate receptor subunits in vestibular nuclear neurons responsive to vertical linear acceleration

Both glutamate receptors and transporters are known to be important in the postsynaptic regulation of glutamate neurotransmission. However, the maturation profile of glutamate transporter EAAC1 and glutamate receptor subunits (NR1, NR2A and NR2B; and GluR 1-4) in functionally activated saccule-related vestibular nuclear neurons of postnatal rats remains unclear. In the present study, conscious ...

متن کامل

Syntaxin 1 is expressed in the trout saccular hair cells: RT-PCR and immunocytochemical observations

Syntaxin is one of several proteins that may be involved in the docking of synaptic vesicles, synaptic vesicle recycling, and non-synaptic membrane trafficking. Presence of syntaxin has been reported in rat auditory and vestibular end organs. In the current study, we have examined the expression of message for syntaxin 1 in hair cells of the sacculus of the rainbow trout, Oncorhynchus mykiss, w...

متن کامل

Syntaxin 1 is expressed in the trout saccular hair cells: RT-PCR and immunocytochemical observations

Syntaxin is one of several proteins that may be involved in the docking of synaptic vesicles, synaptic vesicle recycling, and non-synaptic membrane trafficking. Presence of syntaxin has been reported in rat auditory and vestibular end organs. In the current study, we have examined the expression of message for syntaxin 1 in hair cells of the sacculus of the rainbow trout, Oncorhynchus mykiss, w...

متن کامل

O 3:Therapeutic Potential of a Novel NMDA Receptor Subunit 2B Antagonist in a Mouse Model of Autoimmune Neuroinflammation

Glutamate-mediated excitotoxicity and neurodegeneration have been shown as pathophysiological hallmarks of multiple sclerosis (MS) and other autoimmune inflammatory CNS disorders. N‑Methyl‑D‑Aspartate (NMDA) receptors play a pivotal role in the mediation of neuronal glutamate excitotoxicity leading to cellular damage and apoptotic cell death. Current treatment approaches targeting glutamate exc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 17 19  شماره 

صفحات  -

تاریخ انتشار 1997